Reactions of chlorine dioxide with organic compounds 2.* Oxidation of thiols

O. M. Lezina, S. A. Rubtsova, * and A. V. Kuchin

Institute of Chemistry, Komi Research Center, Ural Branch of the Russian Academy of Sciences, 48 ul. Pervomaiskaya, 167610 Syktyvkar, Russian Federation.

Fax: +7 (821 2) 43 6677. E-mail: info@chemi.komisc.ru

Oxidation of thiols with chlorine dioxide smoothly affords the corresponding disulfides.

Key words: chlorine dioxide, oxidation, thiol, disulfide.

Oxidation of thiols with various oxidants has been much investigated; $^{2-4}$ however, the use of chlorine dioxide (ClO₂) as an oxidant is only recent (see the relevant kinetic studies^{5,6}).

We showed that oxidation of thiols 1a-c with chlorine dioxide selectively affords disulfides 2a-c in high yields.

RSH
$$\xrightarrow{\text{CIO}_2}$$
 RS—SR
1a-c 2a-c

 $R = Bn(a), C_6H_{13}(b), C_2H_4OH(c)$

Oxidation was carried out in three ways: a solution of a thiol in an organic solvent was bubbled by passing an air—oxidant mixture (method A); a thiol was added dropwise to a solvent presaturated with the oxidant (method B); and ClO_2 dissolved in water was immediately mixed with a solution of the starting compound (method C).

In all cases, the molar thiol: ClO_2 ratio was 1: 0.5; the yields of the corresponding disulfides were 96 to 98%.

Experimental

Commercial thiols 1a—c (99% purity) were used as purchased. Aqueous ClO_2 was a commercial product; the concentration of ClO_2 in the initial solution was determined by titration according to a known procedure.⁷

TLC was carried out on Silufol plates; spots were visualized with aqueous 5% KMnO₄ acidified with several drops of conc. H₂SO₄. Eluents were light petroleum—Et₂O (7:3) for **1a**, Me₂CO—heptane (2:3) for **1b**, and Me₂CO—heptane (5:1) for **1c**.

GLC analysis was performed with a Chrom-5 chromatograph (flame ionization detector, column 3×3000 mm, SKTF-50

on Chromaton-N-AW-DMCS as the stationary phase, helium as a carrier gas). Organosulfur compounds were analyzed in a temperature range from 50 to 250 °C at a heating rate of 6 deg min⁻¹. Compounds were identified by comparing their retention times with those of authentic samples.

Mass spectra were recorded on a Shimadzu QP 5050A chromatomass-spectrometer (column SPB-5 ($60 \text{ m} \times 0.32 \text{ mm}$), column temperature 50—250 °C, heating rate 5 deg min⁻¹).

Melting points were determined in an open capillary.

Typical procedures for oxidation of thiols. A. Bis(2-hydroxyethyl) disulfide (2c). A mixture of air and ClO_2 (0.22 g, 3.2 mmol) obtained from an aqueous solution was passed through a solution of ethanethiol 1c (0.5 g, 6.4 mmol) in AcOEt (5 mL) for 2 h. Water vapors were collected in a trap with conc. H_2SO_4 . The reaction mixture was magnetically stirred for 2 h. After the reaction was completed, the solvent was removed to give disulfide 2c (0.47 g, 96%), m.p. 23–24 °C (cf. Ref. 8: 24–25 °C).

B. Dibenzyl disulfide (2a). Benzylmercaptan 1a (0.5 g, 4.0 mmol) was added dropwise at 20 °C to a solution of ClO_2 obtained by bubbling AcOEt (5 mL) with a mixture of air with ClO_2 (0.136 g, 2.0 mmol). The reaction mixture was magnetically stirred for 120 min. After the reaction was completed, the solvent was removed to give dibenzyl disulfide 2a (0.96 g, 98%), m.p. 70 °C (EtOH) (cf. Ref. 10: 70–71 °C).

C. Dihexyl disulfide (2b). A solution of thiol 2 (0.5 g, 4.2 mmol) in hexane (5 mL) was mixed with aqueous ClO₂ (0.143 g, 2.1 mmol). The reaction mixture was magnetically stirred at 20 °C for 3 h. After the reaction was completed (decoloration of the solution), the organic phase was separated on a separating funnel, and the solvent was removed to give dihexyl disulfide 2b (0.49 g, 98%), b.p. 71−73 °C (2 Torr). Found (%): C, 61.46; H, 11.26; S, 27.28. C₁₂H₂₆S₂. Calculated (%): C, 61.54; H, 11.11; S, 27.35. MS (EI, 70 eV), m/z (I_{rel} (%)): 234 [M]⁺ (19); 150 [C₆H₁₃SSH]⁺ (17); 117 [C₆H₁₃S]⁺ (11); 85 [C₆H₁₃]⁺ (24); 57 [C₄H₉]⁺ (16); 55 [C₄H₇]⁺ (16); 43 [C₃H₇]⁺ (100).

This work was financially supported by the Russian Foundation for Basic Research (Ural Regional Project No. 01-03-96404).

^{*} For Part 1, see Ref. 1.

References

- A. V. Kuchin, S. A. Rubtsova, and I. V. Loginova, *Izv. Akad. Nauk, Ser. Khim.*, 2001, 813 [*Russ. Chem. Bull., Int. Ed.*, 2001, **50**, 432].
- Comprehensive Organic Chemistry. The Synthesis and Reactions of Organic Compounds, Ed. D. Barton and W. D. Ollis, Pergamon Press, 1979, 5.
- 3. S. Oae, *Chemistry of Organic Sulfur Compounds*, Kagaku-Dojin, Kyoto, 1968.
- A. V. Tarakanova and A. V. Anisimov, Vestn. Mosk. Univ., Ser. 2: Khim., 1996 [Bull. Moscow Univ., Div. Chem., 1996 (Engl. Transl.)].
- M. Z. Yakupov, V. V. Shereshovets, U. B. Imashev, and F. R. Ismagilov, *Izv. Akad. Nauk, Ser. Khim.*, 2001, 2244 [*Russ. Chem. Bull., Int. Ed.*, 2001, 50, 2352].

- M. Z. Yakupov, N. K. Lyapina, V. V. Shereshovets, and U. B. Imashev, *Kinet. Katal.*, 2001, 42, 673 [*Kinet. Catal.*, 2001, 42 (Engl. Transl)].
- 7. T. A. Tumanova and I. E. Flis, *Fiziko-khimicheskie osnovy otbelki* [*Physicochemical Foundations of Bleaching*], Lesnaya Promyshlennost', Moscow, 1972, 236 (in Russian).
- 8. Beilstein, 1, 470.
- 9. US Pat. 54 405 549, 1995; Chem. Abstr., 1995.
- B. V. Aivazov, S. M. Petrov, V. R. Khairullina, and V. G. Yaprintseva, Fiziko-khimicheskie konstanty seroorganicheskikh soedinenii [Physicochemical Constants of Organosulfur Compounds], Khimiya, Moscow, 1964, 20 (in Russian).

Received April 8, 2003